

Imperial College London

AN OPEN-SOURCE TOOLKIT TO DESIGN AND EVALUATE NET-ZERO PATHWAYS FOR INDUSTRIAL CLUSTERS

Lukas Küng^{a,*}, Arezoo Azimi^a Till Strunge^{a,b}, Nixon Sunny^c, Zhenggang Nie^d, Bangkit Setiawan^d, Naveed Tariq^c, Anna Korre^d, Nilay Shah^c, Mijndert van der Spek^a

^aResearch Centre for Carbon Solution, Heriot-Watt University, Edinburgh, EH14 4AS, UK ^bInstitute for Advanced Sustainability Studies e.V., Potsdam 14467, Germany

^cDepartment of Chemical Engineering, Imperial College London, London, UK ^dDepartment of Earth Science and Engineering, ^d College London, London, UK

WHY A TOOL FOR CLUSTERS?

- Decarbonization of industrial processes is essential to meet climate goals
- Focusing on industrial clusters instead of single sites can help aid the decarbonization by leveraging synergies and with economies of scale
- Explore new insights for industrial decarbonization

- A cluster consist of sites of industrial scale processes within geographical proximity (similar location) which can share the same infrastructure
- Initial focus on the industrial sectors of steel & iron mills, refineries, cement production, and CCGT power plants

PROBLEM STATEMENT – INTERVENTIONS TO DECARBONIZE INDUSTRIAL PROCESSES

Example:

Decarbonization is driven by technological interventions, changing the incumbent processes. The toolkit incorporates a portfolio of interventions. Each intervened process is quantified based on a detailed process models

The optimal design and transformation of a cluster is expressed by:

- **1. WHICH** technologies or distribution options should be installed?
- 2. WHAT SIZE should the installation be?
- **3. WHERE** should these technologies be installed?
- **4.** WHEN should/can these technologies be installed?

SOLVING THE PROBLEM – OPTIMAL PATHWAY DEVELOPMENT

Following a Resource Technology Network (RTN) formulation, the problem is defined through the use, production, transport, storage, import, and emission of resources. Base and intervened processes are described by their conversion factors between resources.

A pathway towards a desirable cluster design consists of multiple investment rounds. Within each round (WHEN), the three points WHICH, WHAT SIZE, and WHERE are solved. Finding the optimal solution requires an optimizer to solve a Mixed-integer linear programming (MILP) problem. The toolkit breaks the problem down into two steps.

- **1)** Snapshot: optimal solution of cluster design
- 2) Backcasting: accounting for path-dependencies and lock-in effects by starting from the snapshot solution of the final investment round and working backwards in time.

EXAMPLE RESULTS – CCS NETWORK DESIGN FOR A HYPOTHETICAL CLUSTER

- Assuming three investment rounds, with different emissions targets
- Allowing the installation of Carbon Capture technology, Direct Air Capture Plants, CO2 transport network, and injection and storage technologies.
- Cluster consisting of:
 - Refinery (R)
 - CCGT Power Plant (P)
- Steel Mill (S) \bullet
- Cement Plant (C) \bullet

INSIGHTS FROM THE TOOL

Economic	 Cost metrics Cluster CAPEX and OPEX Primary resource consumption 	Technical	 Reliability, Safety and risk analysis Energy intensity metrics Technology readiness levels 	We would li work was su Industrial C Industrial De Innovation Ce
Environmental	 Per unit material consumption rates Key pollutant emissions and reduction metrics LCA indicators 	Social	 Integration with low-carbon alternatives Social costs of CO₂ emissions 	EP/V027050/1
Geographic	 Infrastructure and upgrade requirements Demand and storage for energy CO₂ reservoir effects 	Policy	 Regulation and incentivisation Demand and storage for energy Carbon pricing 	

ACKNOWLEDGMENT

ke to acknowledge that this apported by the UKRI ISCF hallenge within the UK carbonisation Research and entre (IDRIC) award number:

UK Research and Innovation

IDRIC